

Infrared CO2 Sensor Module (Model: MH-Z19C-DZ)

User's Manual

(Version 1.2)

Issue Date. 2020.12

Zhengzhou Winsen Electronics Technology Co., Ltd
ISO9001 Certificated Company

Statement

This manual's copyright belongs to Zhengzhou Winsen Electronics Technology Co., LTD. Without

the written permission, any part of this manual shall not be copied, translated, stored in database

or retrieval system, also can't spread through electronic, copying, record ways.

Thanks for purchasing our product. In order to let customers use it better and reduce the faults

caused by misuse, please read the manual carefully and operate it correctly in accordance with the

instructions. If users disobey the terms or remove, disassemble, change the components inside of

the sensor, we shall not be responsible for the loss.

The specific such as color, appearance, sizes &etc., please in kind prevail.

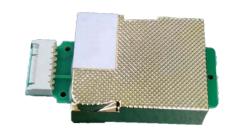
We are devoting ourselves to products development and technical innovation, so we reserve the

right to improve the products without notice. Please confirm it is the valid version before using this

manual. At the same time, users' comments on optimized using way are welcome.

Please keep the manual properly, in order to get help if you have questions during the usage in the

future.

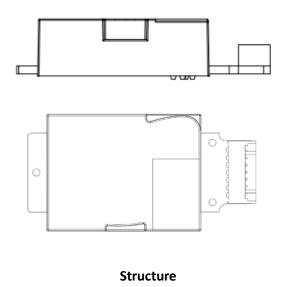

Zhengzhou Winsen Electronics Technology CO., LTD.

MH-Z19C-DZ NDIR CO2 Module

Profile

MH-Z19C-DZ NDIR infrared gas module is a common type, small size sensor, using non-dispersive infrared (NDIR) principle to detect the existence of CO2 in the air, with good selectivity, non-oxygen dependent and long life. Built-in temperature compensation; and it has UART output and PWM output. It is developed by the tight integration of mature infrared absorbing gas detection technology, precision optical circuit design and superior circuit design.

Main Features


- Chamber is gold plated
- High sensitivity, low power consumption
- Good stability
- Temperature compensation, excellent linear output
- Multiple output modes: UART, DAC, PWM
- Long lifespan
- Anti-water vapor interference, anti-poisoning

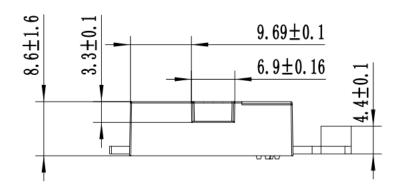
Applications

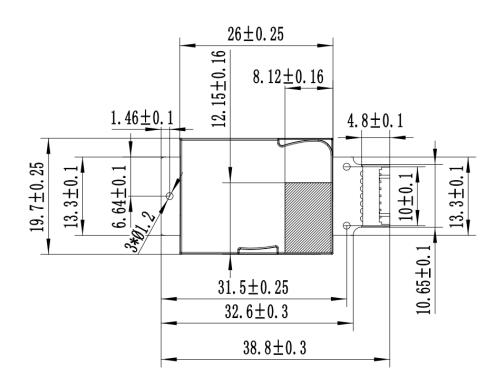
- HVAC refrigeration
- Air cleaner device
- Smart home Ventilation system
- Indoor air quality monitoring
- School

Main parameters

Model No.	MH-Z19C-DZ		
Detection Gas	CO2		
Working voltage	DC(5.0±0.1)V		
Average current	< 40mA (@5V power supply)		
Peak current	125mA (@5V power supply)		
Interface level	3.3 V (Compatible with 5V)		
Detection Dange	400~5000ppm(optional)(400~1000		
Detection Range	Oppm range could be customized)		
	Serial Port (UART) (TTL level 3.3V)		
	PWM		
Output signal	Analog output(DAC) (default		
	0.4~2V)		
	(0~3V range could be customized)		
Preheat time	2.5min		
Response Time	T ₉₀ < 120s		

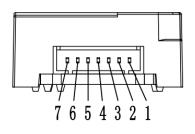
创造完美、服务社会


Working	-10℃~50℃
temperature	
Storage	-20℃∼60℃
temperature	20 0 00 0
Working	0 ~ 95% RH (No condensation)
humidity	0 93% KH (NO CONGENSATION)
Weight	5 g
Lifespan	> 5 years


Detection range and accuracy

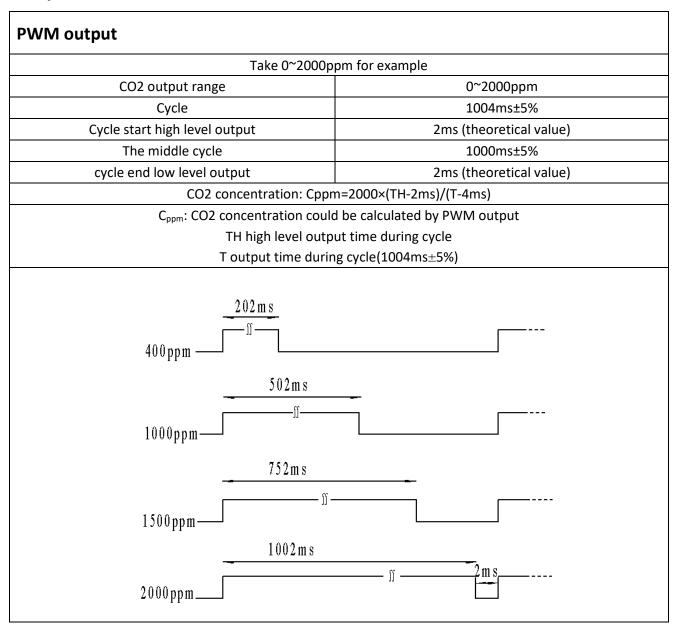
Detection Gas	Formula	Detection Range	Accuracy	
Carbon Dioxide	CO ₂	400∼2000 ppm	±(50ppm+5% reading value)	
	CO ₂	400∼5000 ppm	±(50ppiii+5% readilig value)	

Dimension



Pin Definition

Pin	Terminal pin Definition
Pin 1	HD
Pin 2	Analog Output Vo
Pin 3	Negative Pole(GND)



Pin 4	Positive Pole(Vin)
Pin 5	UART(RXD)TTL Level data input
Pin 6	UART(TXD)TTL Level data output
Pin 7	PWM

Terminal connection version

Output

Serial port output (UART)

Hardware connection

Connect module's Vin-GND-RXD-TXD to users' 5V-GND-TXD-RXD.

(Users must use TTL level. If RS232 level, it must be converted.)

Software setting

Set serial port baud rate be 9600, data bit 8 bytes, stop bit 1byte, parity bit null.

Commands					
0x86	Read CO2 concentration				
0x87	Calibrate Zero Point (ZERO)				

0x86- Read CO2 concentration

c 1:	
Sending	command command
Jenung	COMMINICATION

Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8
Start	Reserved	Comman	-	-	-	-	-	Checksu
Byte		d						m
0xFF	0x01	0x86	0x00	0x00	0x00	0x00	0x00	0x79
_								

Return value

Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8
Start	Comman	Concentr	Concentr	-	-	-	-	Checksu
Byte	d	ation	ation					m
		(High 8	(Low 8					
		Byte)	Byte)					
0xFF	0x86	HIGH	LOW	-	-	-	-	Checksu
								m

For example: CO2 concentration = HIGH * 256 + LOW

How to calculate concentration: convert hexadecimal 01 into decimal 1, hexadecimal F4 into decimal 244, then 1*256+244=500ppm

Analog Voltage Output (Vo)

Conversion between analog voltage output and concentration, take $0.4V^2V$ as an example: Vo(V)=0.4V+(2.0V-0.4V)*C(concentration ppm) / range(ppm)

Checksum calculation method

Checksum = (Negative (Byte1+Byte2+Byte3+Byte4+Byte5+Byte6+Byte7))+1

For example:

. or example.								
Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8
Start Byte	Reserve	Comma	-	-	-	-	-	Check
	d	nd						sum
0xFF	0x01	0x86	0x00	0x00	0x00	0x00	0x00	Check
								sum


```
Calculating Checksum:
1. Add Byte 1 to Byte 7: 0x01 + 0x86 + 0x00 + 0x00 + 0x00 + 0x00 = 0x87
2. Negative: 0xFF - 0x87 = 0x78
3. Then+1: 0x78 + 0x01 = 0x79

C language

char getCheckSum(char *packet)
{
    char i, checksum;
    for( i = 1; i < 8; i++)
    {
        checksum += packet[i];
    }
    checksum = 0xff - checksum;
    checksum += 1;
    return checksum;
}</pre>
```

Zero Point Calibration

This module has three methods for zero point calibration: hand-operated method, sending command method and self-calibration. All the zero point is at 400ppm CO2.

Hand-operated method:

Connect module's HD pin to low level(0V), lasting for 7 seconds at least. Before calibrating the zero point, please ensure that the sensor is stable for more than 20 minutes at 400ppm ambient environment.

Sending command method:

Zero and Span point calibration can be achieved by sending a calibration command to the sensor via the serial port (URAT). Zero and SPAN point calibration commands are as follows:

0x87-Zero Point Calibration

Sending command

Byte0	Byte1	Byte2	Byte3	Byte4	Byte5	Byte6	Byte7	Byte8
Start	Reserved	Comman	-	-	-	-	-	Checksu
Byte		d						m
0xFF	0x01	0x87	0x00	0x00	0x00	0x00	0x00	Checksu
								m

No return value

For example: Zero Point means 400ppm, put the module in 400ppm standard CO2 gas for at least 30 minutes. When calibration is done, the sensor concentration value is about 400ppm

Self-calibration:

After the module works for some time, it can judge the zero point intelligently and do the zero calibration automatically. The calibration cycle is every 24 hours since the module is power on. The zero point is 400ppm.

This method is suitable for office and home environment, not suitable for agriculture greenhouse, farm, refrigerator, etc.. If the module is used in latter environment, please turn off this function.

Notes

- Please avoid the pressure of its gilded plastic chamber from any direction, during welding, installation, and use.
- When placed in small space, the space should be well ventilated, especially for diffusion window.
- To ensure the normal work, the power supply must be among 4.5V~5.5V DC rang, the power current must be not less than 150mA. Out of this range, it will result in the failure of the sensor. (The concentration output is low, or the sensor cannot work normally.)
- The module should be away from heat, and avoid direct sunlight or other heat radiation.
- The module should be calibrated termly, the suggested period is no longer than 6 months.
- Do not use the sensor in the high dusty environment for long time.
- During the zero-point calibration procedure by manual or sending command, the sensor must work in stable gas environment (400ppm) for over 30 minutes.
- Forbid using wave soldering for the sensor.
- When soldering with soldering iron, set the temperature to be (350 \pm 5) $^{\circ}$ C, and soldering time must be within 3 seconds.

Zhengzhou Winsen Electronics Technology Co., Ltd

Add: No.299, Jinsuo Road, National Hi-Tech Zone,

Zhengzhou 450001 China **Tel:** +86-371-67169097/67169670

Fax: +86-371-60932988

E-mail: <u>sales@winsensor.com</u>
Website: <u>www.winsen-sensor.com</u>